Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085033

RESUMO

Low-coverage whole-genome sequencing (also known as "genome skimming") is becoming an increasingly affordable approach to large-scale phylogenetic analyses. While already routinely used to recover organellar genomes, genome skimming is rather rarely utilized for recovering single-copy nuclear markers. One reason might be that only few tools exist to work with this data type within a phylogenomic context, especially to deal with fragmented genome assemblies. We here present a new software tool called Patchwork for mining phylogenetic markers from highly fragmented short-read assemblies as well as directly from sequence reads. Patchwork is an alignment-based tool that utilizes the sequence aligner DIAMOND and is written in the programming language Julia. Homologous regions are obtained via a sequence similarity search, followed by a "hit stitching" phase, in which adjacent or overlapping regions are merged into a single unit. The novel sliding window algorithm trims away any noncoding regions from the resulting sequence. We demonstrate the utility of Patchwork by recovering near-universal single-copy orthologs within a benchmarking study, and we additionally assess the performance of Patchwork in comparison with other programs. We find that Patchwork allows for accurate retrieval of (putatively) single-copy genes from genome skimming data sets at different sequencing depths with high computational speed, outperforming existing software targeting similar tasks. Patchwork is released under the GNU General Public License version 3. Installation instructions, additional documentation, and the source code itself are all available via GitHub at https://github.com/fethalen/Patchwork.


Assuntos
Genoma , Genômica , Filogenia , Análise de Sequência de DNA/métodos , Genômica/métodos , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Nat Ecol Evol ; 7(12): 2108-2124, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857891

RESUMO

Regenerative abilities vary dramatically across animals. Even amongst planarian flatworms, well-known for complete regeneration from tiny body fragments, some species have restricted regeneration abilities while others are almost entirely regeneration incompetent. Here, we assemble a diverse live collection of 40 planarian species to probe the evolution of head regeneration in the group. Combining quantification of species-specific head-regeneration abilities with a comprehensive transcriptome-based phylogeny reconstruction, we show multiple independent transitions between robust whole-body regeneration and restricted regeneration in freshwater species. RNA-mediated genetic interference inhibition of canonical Wnt signalling in RNA-mediated genetic interference-sensitive species bypassed all head-regeneration defects, suggesting that the Wnt pathway is linked to the emergence of planarian regeneration defects. Our finding that Wnt signalling has multiple roles in the reproductive system of the model species Schmidtea mediterranea raises the possibility that a trade-off between egg-laying, asexual reproduction by fission/regeneration and Wnt signalling drives regenerative trait evolution. Although quantitative comparisons of Wnt signalling levels, yolk content and reproductive strategy across our species collection remained inconclusive, they revealed divergent Wnt signalling roles in the reproductive system of planarians. Altogether, our study establishes planarians as a model taxon for comparative regeneration research and presents a framework for the mechanistic evolution of regenerative abilities.


Assuntos
Planárias , Animais , Planárias/genética , Planárias/metabolismo , Transcriptoma , Filogenia , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...